|  Help  |  About  |  Contact Us

Publication : HDAC3 inhibition in diabetic mice may activate Nrf2 preventing diabetes-induced liver damage and FGF21 synthesis and secretion leading to aortic protection.

First Author  Zhang J Year  2018
Journal  Am J Physiol Endocrinol Metab Volume  315
Issue  2 Pages  E150-E162
PubMed ID  29634312 Mgi Jnum  J:266070
Mgi Id  MGI:6207941 Doi  10.1152/ajpendo.00465.2017
Citation  Zhang J, et al. (2018) HDAC3 inhibition in diabetic mice may activate Nrf2 preventing diabetes-induced liver damage and FGF21 synthesis and secretion leading to aortic protection. Am J Physiol Endocrinol Metab 315(2):E150-E162
abstractText  Vascular complications are common pathologies associated with type 1 diabetes. In recent years, histone deacetylation enzyme (HDAC) inhibitors have been shown to be successful in preventing atherosclerosis. To investigate the mechanism for HDAC3 inhibition in preventing diabetic aortic pathologies, male OVE26 type 1 diabetic mice and age-matched wild-type (FVB) mice were given the HDAC3-specific inhibitor RGFP-966 or vehicle for 3 mo. These mice were then euthanized immediately or maintained for an additional 3 mo without treatment. Levels of aortic inflammation and fibrosis and plasma and fibroblast growth factor 21 (FGF21) levels were determined. Because the liver is the major organ for FGF21 synthesis in diabetic animals, the effects of HDAC3 inhibition on hepatic FGF21 synthesis were examined. Additionally, hepatic miR-200a and kelch-like ECH-associated protein 1 (Keap1) expression and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were measured. HDAC3 inhibition significantly reduced aortic fibrosis and inflammation in OVE26 mice at both 3 and 6 mo. Plasma FGF21 levels were significantly higher in RGFP-966-treated OVE26 mice compared with vehicle-treated mice at both time points. It also significantly reduced hepatic pathologies associated with diabetes, accompanied by increased FGF21 mRNA and protein expression. HDAC3 inhibition also increased miR-200a expression, reduced Keap1 protein levels, and increased Nrf2 nuclear translocation with an upregulation of antioxidant gene and FGF21 transcription. Our results support a model where HDAC3 inhibition may promote Nrf2 activity by increasing miR-200a expression with a concomitant decrease in Keap1 to preserve hepatic FGF21 synthesis. The preservation of hepatic FGF21 synthesis ultimately leads to a reduction in diabetes-induced aorta pathologies.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression