First Author | Nakazawa T | Year | 2005 |
Journal | Brain Res Mol Brain Res | Volume | 135 |
Issue | 1-2 | Pages | 58-68 |
PubMed ID | 15857669 | Mgi Jnum | J:97966 |
Mgi Id | MGI:3576827 | Doi | 10.1016/j.molbrainres.2004.12.006 |
Citation | Nakazawa T, et al. (2005) Retinal G-substrate, potential downstream component of NO/cGMP/PKG pathway, is located in subtype of retinal ganglion cells and amacrine cells with protein phosphatases. Brain Res Mol Brain Res 135(1-2):58-68 |
abstractText | The aim of this study was to determine the distribution and function of G-substrate, a specific substrate of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-cGMP-dependent protein kinase (PKG) signaling pathway, in normal rat retina and in G-substrate knockout mice. The retinas of adult wild-type rats and mice and G-substrate knockout mice were studied immunohistologically to characterize the upstream and downstream components of the NO-cGMP-PKG pathway. Immunoblot analysis showed that the molecular weight of retinal G-substrate was similar to that of cerebellar G-substrate. In adult rats and mice, retinal G-substrate was located in a subpopulation of amacrine cells and in C38-positive retinal ganglion cells (RGCs) but not in alpha RGCs. In addition, retinal G-substrate was co-expressed with other upstream and downstream signaling components of the NO-cGMP-PKG-G-substrate-phosphatase pathway in the adult retina. Electroretinographic (ERG) analysis demonstrated that there was no significant difference between the ERGs of wild-type and G-substrate knockout mice. These results suggest that retinal G-substrate plays a role as a downstream component of the NO-cGMP-PKG pathway. The co-localization of retinal G-substrate with protein Ser/Thr phosphatases suggests that it acts as an endogenous protein phosphatase inhibitor as in the cerebellum. |