First Author | Nguyen LM | Year | 2014 |
Journal | Diabetes | Volume | 63 |
Issue | 5 | Pages | 1685-97 |
PubMed ID | 24458355 | Mgi Jnum | J:225251 |
Mgi Id | MGI:5691902 | Doi | 10.2337/db13-1048 |
Citation | Nguyen LM, et al. (2014) Decreasing cx36 gap junction coupling compensates for overactive KATP channels to restore insulin secretion and prevent hyperglycemia in a mouse model of neonatal diabetes. Diabetes 63(5):1685-97 |
abstractText | Mutations to the ATP-sensitive K(+) channel (KATP channel) that reduce the sensitivity of ATP inhibition cause neonatal diabetes mellitus via suppression of beta-cell glucose-stimulated free calcium activity ([Ca(2+)]i) and insulin secretion. Connexin-36 (Cx36) gap junctions also regulate islet electrical activity; upon knockout of Cx36, beta-cells show [Ca(2+)]i elevations at basal glucose. We hypothesized that in the presence of overactive ATP-insensitive KATP channels, a reduction in Cx36 would allow elevations in glucose-stimulated [Ca(2+)]i and insulin secretion to improve glucose homeostasis. To test this, we introduced a genetic knockout of Cx36 into mice that express ATP-insensitive KATP channels and measured glucose homeostasis and islet metabolic, electrical, and insulin secretion responses. In the normal presence of Cx36, after expression of ATP-insensitive KATP channels, blood glucose levels rapidly rose to >500 mg/dL. Islets from these mice showed reduced glucose-stimulated [Ca(2+)]i and no insulin secretion. In mice lacking Cx36 after expression of ATP-insensitive KATP channels, normal glucose levels were maintained. Islets from these mice had near-normal glucose-stimulated [Ca(2+)]i and insulin secretion. We therefore demonstrate a novel mechanism by which islet function can be recovered in a monogenic model of diabetes. A reduction of gap junction coupling allows sufficient glucose-stimulated [Ca(2+)]i and insulin secretion to prevent the emergence of diabetes. |