|  Help  |  About  |  Contact Us

Publication : Re-examination of Dietary Amino Acid Sensing Reveals a GCN2-Independent Mechanism.

First Author  Leib DE Year  2015
Journal  Cell Rep Volume  13
Issue  6 Pages  1081-1089
PubMed ID  26526991 Mgi Jnum  J:228969
Mgi Id  MGI:5749908 Doi  10.1016/j.celrep.2015.09.055
Citation  Leib DE, et al. (2015) Re-examination of Dietary Amino Acid Sensing Reveals a GCN2-Independent Mechanism. Cell Rep 13(6):1081-9
abstractText  Animals cannot synthesize nine essential amino acids (EAAs) and must therefore obtain them from food. Mice reportedly reject food lacking a single EAA within the first hour of feeding. This remarkable phenomenon is proposed to involve post-ingestive sensing of amino acid imbalance by the protein kinase GCN2 in the brain. Here, we systematically re-examine dietary amino acid sensing in mice. In contrast to previous results, we find that mice cannot rapidly identify threonine- or leucine-deficient food in common feeding paradigms. However, mice attain the ability to identify EAA-deficient food following 2 days of EAA deprivation, suggesting a requirement for physiologic need. In addition, we report that mice can rapidly identify lysine-deficient food without prior EAA deficit, revealing a distinct sensing mechanism for this amino acid. These behaviors are independent of the proposed amino acid sensor GCN2, pointing to the existence of an undescribed mechanism for rapid sensing of dietary EAAs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

2 Authors

3 Bio Entities

Trail: Publication

0 Expression