|  Help  |  About  |  Contact Us

Publication : B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice.

First Author  Fuso A Year  2008
Journal  Mol Cell Neurosci Volume  37
Issue  4 Pages  731-46
PubMed ID  18243734 Mgi Jnum  J:135223
Mgi Id  MGI:3790880 Doi  10.1016/j.mcn.2007.12.018
Citation  Fuso A, et al. (2008) B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci 37(4):731-46
abstractText  Etiological and molecular studies on the sporadic form of Alzheimer's disease have yet to determine the underlying mechanisms of neurodegeneration. Hyperhomocysteinemia is associated with Alzheimer's disease, and has been hypothesized to promote neurodegeneration, by inhibiting brain methylation activity. The aim of this work was to determine whether a combined folate, B12 and B6 dietary deficiency, would induce amyloid-beta overproduction, and to study the mechanisms linking vitamin deficiency, hyperhomocysteinemia and amyloidogenesis in TgCRND8 and 129Sv mice. We confirmed that B-vitamin deprivation induces hyperhomocysteinemia and imbalance of S-adenosylmethionine and S-adenosylhomocysteine. This effect was associated with PS1 and BACE up-regulation and amyloid-beta deposition. Finally, we detected intraneuronal amyloid-beta and a slight cognitive impairment in a water maze task at a pre-plaque age, supporting the hypothesis of early pathological function of intracellular amyloid. Collectively, these findings are consistent with the hypothesis that abnormal methylation in association with hyperhomocysteinemia may contribute to Alzheimer's disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

0 Expression