|  Help  |  About  |  Contact Us

Publication : A tonic nicotinic brake controls spike timing in striatal spiny projection neurons.

First Author  Matityahu L Year  2022
Journal  Elife Volume  11
PubMed ID  35579422 Mgi Jnum  J:343999
Mgi Id  MGI:7283672 Doi  10.7554/eLife.75829
Citation  Matityahu L, et al. (2022) A tonic nicotinic brake controls spike timing in striatal spiny projection neurons. Elife 11:e75829
abstractText  Striatal spiny projection neurons (SPNs) transform convergent excitatory corticostriatal inputs into an inhibitory signal that shapes basal ganglia output. This process is fine-tuned by striatal GABAergic interneurons (GINs), which receive overlapping cortical inputs and mediate rapid corticostriatal feedforward inhibition of SPNs. Adding another level of control, cholinergic interneurons (CINs), which are also vigorously activated by corticostriatal excitation, can disynaptically inhibit SPNs by activating alpha4beta2 nicotinic acetylcholine receptors (nAChRs) on various GINs. Measurements of this disynaptic inhibitory pathway, however, indicate that it is too slow to compete with direct GIN-mediated feedforward inhibition. Moreover, functional nAChRs are also present on populations of GINs that respond only weakly to phasic activation of CINs, such as parvalbumin-positive fast-spiking interneurons (PV-FSIs), making the overall role of nAChRs in shaping striatal synaptic integration unclear. Using acute striatal slices from mice we show that upon synchronous optogenetic activation of corticostriatal projections blockade of alpha4beta2 nAChRs shortened SPN spike latencies and increased postsynaptic depolarizations. The nAChR-dependent inhibition was mediated by downstream GABA release, and data suggest that the GABA source was not limited to GINs that respond strongly to phasic CIN activation. In particular, the observed decrease in spike latency caused by nAChR blockade was associated with a diminished frequency of spontaneous inhibitory postsynaptic currents in SPNs, a parallel hyperpolarization of PV-FSIs, and was occluded by pharmacologically preventing cortical activation of PV-FSIs. Taken together, we describe a role for tonic (as opposed to phasic) activation of nAChRs in striatal function. We conclude that tonic activation of nAChRs by CINs maintains a GABAergic brake on cortically-driven striatal output by 'priming' feedforward inhibition, a process that may shape SPN spike timing, striatal processing, and synaptic plasticity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

25 Bio Entities

Trail: Publication

0 Expression