|  Help  |  About  |  Contact Us

Publication : Cell-type-specific responses to associative learning in the primary motor cortex.

First Author  Lee C Year  2022
Journal  Elife Volume  11
PubMed ID  35113017 Mgi Jnum  J:343963
Mgi Id  MGI:6885183 Doi  10.7554/eLife.72549
Citation  Lee C, et al. (2022) Cell-type-specific responses to associative learning in the primary motor cortex. Elife 11:e72549
abstractText  The primary motor cortex (M1) is known to be a critical site for movement initiation and motor learning. Surprisingly, it has also been shown to possess reward-related activity, presumably to facilitate reward-based learning of new movements. However, whether reward-related signals are represented among different cell types in M1, and whether their response properties change after cue-reward conditioning remains unclear. Here, we performed longitudinal in vivo two-photon Ca(2+) imaging to monitor the activity of different neuronal cell types in M1 while mice engaged in a classical conditioning task. Our results demonstrate that most of the major neuronal cell types in M1 showed robust but differential responses to both the conditioned cue stimulus (CS) and reward, and their response properties undergo cell-type-specific modifications after associative learning. PV-INs' responses became more reliable to the CS, while VIP-INs' responses became more reliable to reward. Pyramidal neurons only showed robust responses to novel reward, and they habituated to it after associative learning. Lastly, SOM-INs' responses emerged and became more reliable to both the CS and reward after conditioning. These observations suggest that cue- and reward-related signals are preferentially represented among different neuronal cell types in M1, and the distinct modifications they undergo during associative learning could be essential in triggering different aspects of local circuit reorganization in M1 during reward-based motor skill learning.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Authors

12 Bio Entities

Trail: Publication

0 Expression