|  Help  |  About  |  Contact Us

Publication : Equalizing excitation-inhibition ratios across visual cortical neurons.

First Author  Xue M Year  2014
Journal  Nature Volume  511
Issue  7511 Pages  596-600
PubMed ID  25043046 Mgi Jnum  J:359665
Mgi Id  MGI:7788911 Doi  10.1038/nature13321
Citation  Xue M, et al. (2014) Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511(7511):596-600
abstractText  The relationship between synaptic excitation and inhibition (E/I ratio), two opposing forces in the mammalian cerebral cortex, affects many cortical functions such as feature selectivity and gain. Individual pyramidal cells show stable E/I ratios in time despite fluctuating cortical activity levels. This is because when excitation increases, inhibition increases proportionally through the increased recruitment of inhibitory neurons, a phenomenon referred to as excitation-inhibition balance. However, little is known about the distribution of E/I ratios across pyramidal cells. Through their highly divergent axons, inhibitory neurons indiscriminately contact most neighbouring pyramidal cells. Is inhibition homogeneously distributed or is it individually matched to the different amounts of excitation received by distinct pyramidal cells? Here we discover that pyramidal cells in layer 2/3 of mouse primary visual cortex each receive inhibition in a similar proportion to their excitation. As a consequence, E/I ratios are equalized across pyramidal cells. This matched inhibition is mediated by parvalbumin-expressing but not somatostatin-expressing inhibitory cells and results from the independent adjustment of synapses originating from individual parvalbumin-expressing cells targeting different pyramidal cells. Furthermore, this match is activity-dependent as it is disrupted by perturbing pyramidal cell activity. Thus, the equalization of E/I ratios across pyramidal cells reveals an unexpected degree of order in the spatial distribution of synaptic strengths and indicates that the relationship between the cortex's two opposing forces is stabilized not only in time but also in space.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

23 Bio Entities

Trail: Publication

0 Expression