|  Help  |  About  |  Contact Us

Publication : Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice.

First Author  Thankachan S Year  2019
Journal  Sci Rep Volume  9
Issue  1 Pages  3607
PubMed ID  30837664 Mgi Jnum  J:275914
Mgi Id  MGI:6307243 Doi  10.1038/s41598-019-40398-9
Citation  Thankachan S, et al. (2019) Thalamic Reticular Nucleus Parvalbumin Neurons Regulate Sleep Spindles and Electrophysiological Aspects of Schizophrenia in Mice. Sci Rep 9(1):3607
abstractText  The thalamic reticular nucleus (TRN) is implicated in schizophrenia pathology. However, it remains unclear whether alterations of TRN activity can account for abnormal electroencephalographic activity observed in patients, namely reduced spindles (10-15 Hz) during sleep and increased delta (0.5-4 Hz) and gamma-band activity (30-80 Hz) during wakefulness. Here, we utilized optogenetic and reverse-microdialysis approaches to modulate activity of the major subpopulation of TRN GABAergic neurons, which express the calcium-binding protein parvalbumin (PV), and are implicated in schizophrenia dysfunction. An automated algorithm with enhanced efficiency and reproducibility compared to manual detection was used for sleep spindle assessment. A novel, low power, waxing-and-waning optogenetic stimulation paradigm preferentially induced spindles that were indistinguishable from spontaneously occurring sleep spindles without altering the behavioral state, when compared to a single pulse laser stimulation used by us and others. Direct optogenetic inhibition of TRN-PV neurons was ineffective in blocking spindles but increased both wakefulness and cortical delta/gamma activity, as well as impaired the 40 Hz auditory steady-state response. For the first time we demonstrate that spindle density is markedly reduced by (i) optogenetic stimulation of a major GABA/PV inhibitory input to TRN arising from basal forebrain parvalbumin neurons (BF-PV) and; (ii) localized pharmacological inhibition of low-threshold calcium channels, implicated as a genetic risk factor for schizophrenia. Together with clinical findings, our results support impaired TRN-PV neuron activity as a potential cause of schizophrenia-linked abnormalities in cortical delta, gamma, and spindle activity. Modulation of the BF-PV input to TRN may improve these neural abnormalities.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression