|  Help  |  About  |  Contact Us

Publication : Inhibition of four-and-a-half LIM domain protein-2 increases survival, migratory capacity, and paracrine function of human early outgrowth cells through activation of the sphingosine kinase-1 pathway: implications for endothelial regeneration.

First Author  Ebrahimian T Year  2014
Journal  Circ Res Volume  114
Issue  1 Pages  114-23
PubMed ID  24084691 Mgi Jnum  J:221462
Mgi Id  MGI:5639194 Doi  10.1161/CIRCRESAHA.113.301954
Citation  Ebrahimian T, et al. (2014) Inhibition of four-and-a-half LIM domain protein-2 increases survival, migratory capacity, and paracrine function of human early outgrowth cells through activation of the sphingosine kinase-1 pathway: implications for endothelial regeneration. Circ Res 114(1):114-23
abstractText  RATIONALE: Inhibition of four-and-a-half LIM domain protein-2 (FHL2) attenuates atherosclerotic lesion formation and increases endothelial cell migration. Early outgrowth cells (EOCs) contribute substantially to endothelial repair. OBJECTIVE: We investigated the role of FHL2 in the regulation of EOCs. METHODS AND RESULTS: Human EOCs were cultured from peripheral blood. FHL2 knockdown in EOCs by siRNA resulted in increased EOC numbers and reduced apoptosis, as indicated by decreased cleaved caspase-III and reduced Bax/Bcl-2 expression ratio. This was mediated through increased phosphorylation and membrane translocation of sphingosine kinase-1, increased sphingosine-1-phosphate levels, and Akt phosphorylation. FHL2 knockdown increased stromal cell-derived factor-1-induced EOC migration through upregulation of alphav/beta3, alphav/beta5, and beta2 integrins, associated with increased cortactin expression. Reduced apoptosis, increased EOC migration, and cortactin upregulation by FHL2 siRNA were prevented by CAY10621, the sphingosine kinase-1 inhibitor, and the sphingosine-1-phosphate receptor-1/-3 antagonist VPC23019. These findings were confirmed using spleen-derived EOCs from FHL2(-/-) mice. Apoptosis was decreased and migration increased in endothelial cells exposed to the conditioned medium of FHL2(-/-) versus wild-type (WT) EOCs. These paracrine effects were abolished by VPC23019. Importantly, reendothelialization after focal carotid endothelial injury in WT mice was significantly increased after intravenous injection of FHL2(-/-) versus WT EOCs. CONCLUSIONS: Our findings suggest that FHL2 negatively regulates EOC survival, migration, and paracrine function. FHL2 inhibition in EOCs reduces apoptosis and enhances survival and migratory capacity of both EOCs and surrounding endothelial cells by activation of the sphingosine kinase-1/sphingosine-1-phosphate pathway, resulting in improvement of endothelial regeneration.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression