|  Help  |  About  |  Contact Us

Publication : Postnatal brain and skull growth in an Apert syndrome mouse model.

First Author  Hill CA Year  2013
Journal  Am J Med Genet A Volume  161A
Issue  4 Pages  745-57
PubMed ID  23495236 Mgi Jnum  J:294156
Mgi Id  MGI:6454179 Doi  10.1002/ajmg.a.35805
Citation  Hill CA, et al. (2013) Postnatal brain and skull growth in an Apert syndrome mouse model. Am J Med Genet A 161A(4):745-57
abstractText  Craniofacial and neural tissues develop in concert throughout prenatal and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for AS using the Fgfr2(+/P253R) Apert syndrome mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2). Three-dimensional magnetic resonance microscopy and computed tomography images were acquired from Fgfr2(+/P253R) mice and unaffected littermates at P0 (N = 28) and P2 (N = 20).Three-dimensional coordinate data for 23 skull and 15 brain landmarks were statistically compared between groups. Results demonstrate that the Fgfr2(+/P253R) mice show reduced growth in the facial skeleton and the cerebrum, while the height and width of the neurocranium and caudal regions of the brain show increased growth relative to unaffected littermates. This localized correspondence of differential growth patterns in skull and brain point to their continued interaction through development and suggest that both tissues display divergent postnatal growth patterns relative to unaffected littermates. However, the change in the skull-brain relationship from P0 to P2 implies that each tissue affected by the mutation retains a degree of independence, rather than one tissue directing the development of the other.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression