First Author | House JS | Year | 2015 |
Journal | FASEB J | Volume | 29 |
Issue | 1 | Pages | 323-35 |
PubMed ID | 25342126 | Mgi Jnum | J:218018 |
Mgi Id | MGI:5616456 | Doi | 10.1096/fj.14-253898 |
Citation | House JS, et al. (2015) Genetic variation in HTR4 and lung function: GWAS follow-up in mouse. FASEB J 29(1):323-35 |
abstractText | Human genome-wide association studies (GWASs) have identified numerous associations between single nucleotide polymorphisms (SNPs) and pulmonary function. Proving that there is a causal relationship between GWAS SNPs, many of which are noncoding and without known functional impact, and these traits has been elusive. Furthermore, noncoding GWAS-identified SNPs may exert trans-regulatory effects rather than impact the proximal gene. Noncoding variants in 5-hydroxytryptamine (serotonin) receptor 4 (HTR4) are associated with pulmonary function in human GWASs. To gain insight into whether this association is causal, we tested whether Htr4-null mice have altered pulmonary function. We found that HTR4-deficient mice have 12% higher baseline lung resistance and also increased methacholine-induced airway hyperresponsiveness (AHR) as measured by lung resistance (27%), tissue resistance (48%), and tissue elastance (30%). Furthermore, Htr4-null mice were more sensitive to serotonin-induced AHR. In models of exposure to bacterial lipopolysaccharide, bleomycin, and allergic airway inflammation induced by house dust mites, pulmonary function and cytokine profiles in Htr4-null mice differed little from their wild-type controls. The findings of altered baseline lung function and increased AHR in Htr4-null mice support a causal relationship between genetic variation in HTR4 and pulmonary function identified in human GWAS.-House, J. S., Li, H., DeGraff, L. M., Flake, G., Zeldin, D. C., London, S. J. Genetic variation in HTR4 and lung function: GWAS follow-up in mouse. |