|  Help  |  About  |  Contact Us

Publication : Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules.

First Author  Ohtsubo T Year  2009
Journal  Hypertension Volume  54
Issue  4 Pages  868-76
PubMed ID  19667249 Mgi Jnum  J:166326
Mgi Id  MGI:4844048 Doi  10.1161/HYPERTENSIONAHA.109.135152
Citation  Ohtsubo T, et al. (2009) Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine accumulation in renal tubules. Hypertension 54(4):868-76
abstractText  Xanthine oxidoreductase (XOR) is an enzyme responsible for purine degradation, reactive oxygen species production, and adipogenesis. XOR gene-disrupted (XOR(-/-)) mice demonstrate renal failure and early death within several months. The aim of this study was to elucidate the mechanism of renal damage in XOR(-/-) mice and to determine the physiological role of XOR in the kidney. Histological analysis revealed that renal tubular damage in XOR(-/-) mice was accompanied by deposition of crystals and lipid-rich substances. Triglyceride content in renal homogenates was significantly increased in XOR(-/-) mice. The level of lipogenesis-related gene expression was comparable in XOR(+/+) and XOR(-/-) mice, whereas the expression of adipogenesis-related gene expression was significantly elevated in XOR(-/-) mice. Urinary excretions of xanthine and hypoxanthine were markedly elevated in XOR(-/-) mice. Immunohistochemical analysis, Western blotting, and real time RT-PCR revealed that various markers of fibrosis, inflammation, ischemia, and oxidative stress were increased in XOR(-/-) mice. Finally, we demonstrate that primary renal epithelial cells from XOR(-/-) mice are more readily transformed to myofibroblasts, which is a marker of increased epithelial mesenchymal transition. These results suggest that XOR gene disruption induced the depletion of uric acid and the accumulation of triglyceride-rich substances, xanthine, and hypoxanthine in the renal tubules. We believe that these changes contribute to a complex cellular milieu characterized by inflammation, tissue hypoxia, and reactive oxygen species production, ultimately resulting in renal failure through increased renal interstitial fibrosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression