|  Help  |  About  |  Contact Us

Publication : A spastic paraplegia mouse model reveals REEP1-dependent ER shaping.

First Author  Beetz C Year  2013
Journal  J Clin Invest Volume  123
Issue  10 Pages  4273-82
PubMed ID  24051375 Mgi Jnum  J:204006
Mgi Id  MGI:5529402 Doi  10.1172/JCI65665
Citation  Beetz C, et al. (2013) A spastic paraplegia mouse model reveals REEP1-dependent ER shaping. J Clin Invest 123(10):4273-82
abstractText  Axonopathies are a group of clinically diverse disorders characterized by the progressive degeneration of the axons of specific neurons. In hereditary spastic paraplegia (HSP), the axons of cortical motor neurons degenerate and cause a spastic movement disorder. HSP is linked to mutations in several loci known collectively as the spastic paraplegia genes (SPGs). We identified a heterozygous receptor accessory protein 1 (REEP1) exon 2 deletion in a patient suffering from the autosomal dominantly inherited HSP variant SPG31. We generated the corresponding mouse model to study the underlying cellular pathology. Mice with heterozygous deletion of exon 2 in Reep1 displayed a gait disorder closely resembling SPG31 in humans. Homozygous exon 2 deletion resulted in the complete loss of REEP1 and a more severe phenotype with earlier onset. At the molecular level, we demonstrated that REEP1 is a neuron-specific, membrane-binding, and membrane curvature-inducing protein that resides in the ER. We further show that Reep1 expression was prominent in cortical motor neurons. In REEP1-deficient mice, these neurons showed reduced complexity of the peripheral ER upon ultrastructural analysis. Our study connects proper neuronal ER architecture to long-term axon survival.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

47 Expression

Trail: Publication