|  Help  |  About  |  Contact Us

Publication : Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function.

First Author  Oka S Year  2009
Journal  Endocrinology Volume  150
Issue  3 Pages  1225-34
PubMed ID  18974273 Mgi Jnum  J:146985
Mgi Id  MGI:3839056 Doi  10.1210/en.2008-0646
Citation  Oka S, et al. (2009) Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function. Endocrinology 150(3):1225-34
abstractText  The feeding-fasting nutritional transition triggers a dynamic change in metabolic pathways and is a model for understanding how these pathways are mutually organized. The targeted disruption of the thioredoxin binding protein-2 (TBP-2)/thioredoxin-interacting protein (Txnip)/VDUP1 gene in mice results in lethality with hypertriglyceridemia and hypoglycemia during fasting. To investigate the molecular mechanism of the nutritional transition and the role of TBP-2, microarray analyses were performed using the liver of TBP-2(-/-) mice in the fed and fasted states. We found that the fasting-induced reduction in the expression of lipogenic genes targeted by insulin (SREBP-1), such as FASN and THRSP, was abolished in TBP-2(-/-) mice, and the expression of lipoprotein lipase is down-regulated, which was consistent with the lipoprotein profile. TBP-2(-/-) mice also exhibited enhanced glucose-induced insulin secretion and sensitivity. Another feature of the hepatic gene expression in fed TBP-2(-/-) mice was the augmented expression of peroxisome proliferator activated receptor (PPAR) target genes, such as CD36, FABP2, ACOT1, and FGF21, to regulate fatty acid consumption. In TBP-2(-/-) mice, PPARalpha expression was elevated in the fed state, whereas the fasting-induced up-regulation of PPARalpha was attenuated. We also detected an increased expression of PPARgamma coactivator-1alpha protein in fed TBP-2(-/-) mice. TBP-2 overexpression significantly inhibited PPARalpha-mediated transcriptional activity induced by a specific PPARalpha ligand in vitro. These results suggest that TBP-2 is a key regulator of PPARalpha expression and signaling, and coordinated regulation of PPARalpha and insulin secretion by TBP-2 is crucial in the feeding-fasting nutritional transition.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression