|  Help  |  About  |  Contact Us

Publication : Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses.

First Author  Pauli-Magnus D Year  2007
Journal  Neuroscience Volume  149
Issue  3 Pages  673-84
PubMed ID  17869440 Mgi Jnum  J:145229
Mgi Id  MGI:3834016 Doi  10.1016/j.neuroscience.2007.08.010
Citation  Pauli-Magnus D, et al. (2007) Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses. Neuroscience 149(3):673-84
abstractText  Sensorineural hearing loss (SNHL) comprises hearing disorders with diverse pathologies of the inner ear and the auditory nerve. To date, an unambiguous phenotypical characterization of the specific pathologies in an affected individual remains impossible. Here, we evaluated the use of scalp-recorded auditory steady-state responses (ASSR) and transient auditory brainstem responses (ABR) for differentiating the disease mechanisms underlying sensorineural hearing loss in well-characterized mouse models. We first characterized the ASSR evoked by sinusoidally amplitude-modulated tones in wild-type mice. ASSR were robustly elicited within three ranges of modulation frequencies below 200 Hz, from 200 to 600 Hz and beyond 600 Hz in most recordings. Using phase information we estimated the apparent ASSR latency to be about 3 ms, suggesting generation in the auditory brainstem. Auditory thresholds obtained by automated and visual analysis of ASSR recordings were comparable to those found with tone-burst evoked ABR in the same mice. We then recorded ASSR and ABR from mouse mutants bearing defects of either outer hair cell amplification (KCNQ4-knockout) or inner hair cell synaptic transmission (Bassoon-mutant). Both mutants showed an increase of ASSR and ABR thresholds of approximately 40 dB versus wild-type when investigated at 8 weeks of age. Mice with defective amplification displayed a steep rise of ASSR and ABR amplitudes with increasing sound intensity, presumably reflecting a strong recruitment of synchronously activated neural elements beyond threshold. In contrast, the amplitudes of ASSR and ABR responses of mice with impaired synaptic transmission grew very little with sound intensity. In summary, ASSR allow for a rapid, objective and frequency-specific hearing assessment and together with ABR and otoacoustic emissions can contribute to the differential diagnosis of SNHL.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression