|  Help  |  About  |  Contact Us

Publication : Hexokinase II partial knockout impairs exercise-stimulated glucose uptake in oxidative muscles of mice.

First Author  Fueger PT Year  2003
Journal  Am J Physiol Endocrinol Metab Volume  285
Issue  5 Pages  E958-63
PubMed ID  12865258 Mgi Jnum  J:86559
Mgi Id  MGI:2680761 Doi  10.1152/ajpendo.00190.2003
Citation  Fueger PT, et al. (2003) Hexokinase II partial knockout impairs exercise-stimulated glucose uptake in oxidative muscles of mice. Am J Physiol Endocrinol Metab 285(5):E958-63
abstractText  Muscle glucose uptake (MGU) is distributively controlled by three serial steps: delivery of glucose to the muscle membrane, transport across the muscle membrane, and intracellular phosphorylation to glucose 6-phosphate by hexokinase (HK). During states of high glucose fluxes such as moderate exercise, the HK activity is of increased importance, since augmented muscle perfusion increases glucose delivery, and increased GLUT4 at the cell membrane increases glucose transport. Because HK II overexpression augments exercise-stimulated MGU, it was hypothesized that a reduction in HK II activity would impair exercise-stimulated MGU and that the magnitude of this impairment would be greatest in tissues with the largest glucose requirement. To this end, mice with a HK II partial knockout (HK+/-) were compared with their wild-type control (WT) littermates during either sedentary or moderate exercise periods. Rg, an index of glucose metabolism, was measured using 2-deoxy-[3H]glucose. No differences in glucose metabolism were detected between sedentary groups. The increase in Rg due to exercise was impaired in the highly oxidative heart and soleus muscles of HK+/- compared with WT mice (7 +/- 10 vs. 29 +/- 9 and 8 +/- 3 vs. 25 +/- 7 micromol. 100 g-1. min-1, respectively). However, the increase in Rg due to exercise was not altered in gastrocnemius and superficial vastus lateralis muscles in HK+/- and WT mice (8 +/- 2 vs. 12 +/- 3 and 5 +/- 2 vs. 8 +/- 2 micromol. 100 g-1. min-1, respectively). In conclusion, MGU is impaired by reductions in HK activity during exercise, a physiological condition characterized by high glucose flux. This impairment is critically dependent on the tissue's glucose metabolic rate and correlates with tissue oxidative capacity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression