|  Help  |  About  |  Contact Us

Publication : Urocortin 2 modulates glucose utilization and insulin sensitivity in skeletal muscle.

First Author  Chen A Year  2006
Journal  Proc Natl Acad Sci U S A Volume  103
Issue  44 Pages  16580-5
PubMed ID  17050686 Mgi Jnum  J:116101
Mgi Id  MGI:3692849 Doi  10.1073/pnas.0607337103
Citation  Chen A, et al. (2006) Urocortin 2 modulates glucose utilization and insulin sensitivity in skeletal muscle. Proc Natl Acad Sci U S A 103(44):16580-5
abstractText  Skeletal muscle is the principal tissue responsible for insulin-stimulated glucose disposal and is a major site of peripheral insulin resistance. Urocortin 2 (Ucn 2), a member of the corticotropin-releasing factor (CRF) family, and its cognate type 2 CRF receptor (CRFR2) are highly expressed in skeletal muscle. To determine the physiological role of Ucn 2, we generated mice that are deficient in this peptide. Using glucose-tolerance tests (GTTs), insulin-tolerance tests (ITTs), and hyperinsulinemic euglycemic glucose clamp studies, we demonstrated that mice lacking Ucn 2 exhibited increased insulin sensitivity and were protected against fat-induced insulin resistance. Administration of synthetic Ucn 2 to mutant mice before the GTTs and ITTs restored blood glucose to WT levels. Administration of a CRFR2 selective antagonist to WT mice resulted in a GTT profile that mirrored that of Ucn 2-null mice. Body composition measurements of Ucn 2-null mice on a high-fat diet demonstrated decreases in fat and increases in lean tissue compared with WT mice. We propose that null mutant mice display increased glucose uptake in skeletal muscle through the removal of Ucn 2-mediated inhibition of insulin signaling. In keeping with these data, Ucn 2 inhibited insulin-induced Akt and ERK1/2 phosphorylation in cultured skeletal muscle cells and C2C12 myotubes. These data are consistent with the hypothesis that Ucn 2 functions as a local negative regulator of glucose uptake in skeletal muscle and encourage exploration of the possibility that suppression of the Ucn 2/CRFR2 pathway may provide benefits in insulin-resistant states such as type 2 diabetes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression