First Author | Gao Z | Year | 2005 |
Journal | J Biol Chem | Volume | 280 |
Issue | 10 | Pages | 9375-89 |
PubMed ID | 15590688 | Mgi Jnum | J:110798 |
Mgi Id | MGI:3641339 | Doi | 10.1074/jbc.M413081200 |
Citation | Gao Z, et al. (2005) Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing. J Biol Chem 280(10):9375-89 |
abstractText | This study provides new perspectives of the unique aspects of platelet-derived growth factor beta-receptor (PDGFR-beta) signaling and biological responses through the establishment of a mutant mouse strain in which two loxP sequences were inserted into the introns of PDGFR-beta genome sequences. Isolation of skin fibroblasts from the mutant mice and Cre recombinase transfection in vitro induced PDGFR-beta gene deletion (PDGFR-betaDelta/Delta). The resultant depletion of the PDGFR-beta protein significantly attenuated platelet-derived growth factor (PDGF)-BB-induced cell migration, proliferation, and protection from H2O2-induced apoptosis of the cultured PDGFR-betaDelta/Delta dermal fibroblasts. PDGF-AA and fetal bovine serum were mitogenic and anti-apoptotic but were unable to induce the migration in PDGFR-beta Delta/Delta fibroblasts. Concerning the PDGF signaling, PDGF-BB-induced phosphorylation of Akt, ERK1/2, and JNK, but not p38, decreased in PDGFR-betaDelta/Delta fibroblasts, but PDGF-AA-induced signaling was not altered. Overexpression of the phospholipid phosphatases, SHIP2 and/or PTEN, inhibited PDGF-BB-induced phosphorylation of Akt and ERK1/2 in PDGFR-betaDelta/Delta fibroblasts but did not affect that of JNK and p38. These results indicate that disruption of distinct PDGFR-beta signaling pathways in PDGFR-betaDelta/Delta dermal fibroblasts impaired their proliferation and survival, but completely inhibits migratory response, and that PDGF-BB-induced phosphorylation of Akt and ERK1/2 possibly mediated by PDGFR-alpha is regulated, at least in part, by the lipid phosphatases SHIP2 and/or PTEN. Thus, the PDGFR-beta function on dermal fibroblasts appears to be critical in PDGF-BB action for skin wound healing and is clearly distinctive from that of PDGFR-alpha in the ligand-induced biological responses and the underlying properties of cellular signaling. |