|  Help  |  About  |  Contact Us

Publication : Interferon regulator factor 1/retinoic inducible gene I (IRF1/RIG-I) axis mediates 25-hydroxycholesterol-induced interleukin-8 production in atherosclerosis.

First Author  Wang F Year  2012
Journal  Cardiovasc Res Volume  93
Issue  1 Pages  190-9
PubMed ID  21979142 Mgi Jnum  J:194880
Mgi Id  MGI:5474937 Doi  10.1093/cvr/cvr260
Citation  Wang F, et al. (2012) Interferon regulator factor 1/retinoic inducible gene I (IRF1/RIG-I) axis mediates 25-hydroxycholesterol-induced interleukin-8 production in atherosclerosis. Cardiovasc Res 93(1):190-9
abstractText  AIMS: In this study, the role of retinoic inducible gene I (RIG-I)-mediated signalling in the inflammation of atherosclerosis was investigated to explain the pathology of atherosclerosis. METHODS AND RESULTS: Human and mouse primary cells were exposed to 25-hydroxycholesterol followed by examination of gene expression and activation of the signal pathway with biochemical and molecular biological techniques. A mouse atherosclerotic model was also used. We found that RIG-I was induced in macrophages and endothelium by 25-hydroxycholesterol. Interferon regulatory factor 1 is a key transcription factor for the induction of RIG-I by 25-hydroxycholesterol. The induction of interleukin-8 and growth-regulated protein alpha, the mouse interleukin-8 homologue, by 25-hydroxycholesterol is mediated by RIG-I signalling. RIG-I transduces the signal to downstream molecules, mitochondrial antiviral-signalling protein, transforming growth factor-beta-activated kinase 1, and mitogen-activated protein kinase, leading to the activation of nuclear factor kappaB, activator protein-1, and nuclear factor interleukin-6, all of which are required for the expression of interleukin-8. Finally, we observed that RIG-I is highly expressed in atherosclerotic lesions. CONCLUSION: Our data demonstrate that RIG-I signalling mediates atherosclerotic inflammation. Targeting RIG-I signalling should provide a way to inhibit atherosclerotic inflammation, which holds potential for the therapy of atherosclerosis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Authors

3 Bio Entities

Trail: Publication

0 Expression