|  Help  |  About  |  Contact Us

Publication : ATG5-mediated autophagy suppresses NF-κB signaling to limit epithelial inflammatory response to kidney injury.

First Author  Peng X Year  2019
Journal  Cell Death Dis Volume  10
Issue  4 Pages  253
PubMed ID  30874544 Mgi Jnum  J:293453
Mgi Id  MGI:6445198 Doi  10.1038/s41419-019-1483-7
Citation  Peng X, et al. (2019) ATG5-mediated autophagy suppresses NF-kappaB signaling to limit epithelial inflammatory response to kidney injury. Cell Death Dis 10(4):253
abstractText  G2/M-arrested proximal tubular epithelial cells (TECs) after renal injury are linked to increased cytokines production. ATG5-mediated autophagy in proximal TECs has recently been shown to protect against G2/M cell cycle arrest and renal fibrosis. However, the impacts of autophagy in regulating inflammatorily response mounted by injured TECs remains largely unknown. In the present study, we investigated whether ATG5 acts as an innate immune suppressor in proximal TECs during kidney injury. Using the unilateral ureteric obstruction model in proximal tubule-specific autophagy-deficient mice, we demonstrated that ablation of epithelial ATG5 genes markedly impaired autophagy, resulting in enhanced nuclear factor kappaB (NF-kappaB) activation, macrophage and lymphocyte infiltration, and proinflammatory cytokines production in obstructed kidneys, as compared with wild-type mice. Following stimulation with angiotensin II (Ang II), siRNA silencing of ATG5 in cultured HK-2 cells or ATG5-deficient primary proximal TECs produced more cytokines, including IL-1beta, IL-6, and TNF-alpha than did their control cells. Overexpressed ATG5, but not the autophagy-incompetent ATG5 mutant K130R in HK-2 cells, rendered resistant to Ang II-induced inflammatory response. Immunofluorescence assay indicated that ATG5 and p65 colocalized in the nucleus and cytoplasm, and their interaction was verified in immunoprecipitation assay from HEK-293T cell extracts. Genetic downregulation of endogenous ATG5 increased Ang II-induced phosphorylation and nuclear translocation of p65 and transcriptional activity of NF-kappaB, whereas the overexpressed ATG5, rather than ATG5 mutant K130R, hampered activation of NF-kappaB signaling, suggest an autophagy-dependent anti-inflammatory effect of ATG5. Further, pharmacological manipulation of autophagy yielded similar results both in vivo and in vitro. Additionally, JSH-23, a specific inhibitor of NF-kappaB nuclear translocation, rescued Ang II-driven IL-1beta production in ATG5 siRNA-treated cells and decreased the proportion of cells in G2/M phase. In conclusion, ATG5-mediated autophagy in tubules targets NF-kappaB signaling to protect against renal inflammation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression