| First Author | Wysocki J | Year | 2015 |
| Journal | Am J Hypertens | Volume | 28 |
| Issue | 12 | Pages | 1418-26 |
| PubMed ID | 25968123 | Mgi Jnum | J:286417 |
| Mgi Id | MGI:6403511 | Doi | 10.1093/ajh/hpv054 |
| Citation | Wysocki J, et al. (2015) Plasma and Kidney Angiotensin Peptides: Importance of the Aminopeptidase A/Angiotensin III Axis. Am J Hypertens 28(12):1418-26 |
| abstractText | BACKGROUND: The renin-angiotensin system is a complex regulatory hormonal network with a main biological peptide and therapeutic target, angiotensin (Ang) II (1-8). There are other potentially important Ang peptides that have not been well evaluated. METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for concurrent evaluation of multiple Angs downstream of Ang I (1-10) and Ang II (1-8) in kidney and plasma from wild-type (WT) mice. Angiotensin converting enzyme 2 knockout (ACE2KO) was also used as a way to examine the Angs profile in the absence of ACE2, an enzyme that cleaves both Ang I (1-10) and Ang II (1-8). RESULTS: In plasma from both WT and ACE2KO, levels of Ang I (1-10), Ang III (2-8), and Ang (2-10) were the highest of all the renin-angiotensin system (RAS) peptides. The latter two peptides are products of aminopeptidase A cleavage of Ang II (1-8) and Ang I (1-10), respectively. In contrast, plasma levels of Ang II (1-8), and Ang (1-7), the product of Ang II (1-8) cleavage by ACE2, were low. In kidney from both WT and ACE2KO, Ang II (1-8) levels were high as compared to plasma levels. In the ACE2KO mice, a significant increase in either Ang II (1-8) or a decrease in Ang (1-7) was not observed in plasma or in the kidney. CONCLUSION: RAS-focused peptidomic approach revealed major differences in Ang peptides between mouse plasma and kidney. These Ang peptide profiles show the dominance of the aminopeptidase A/Ang (2-10) and aminopeptidase A/Ang III (2-8) pathways in the metabolism of Ang I (1-10) and Ang II (1-8) over the ACE2/Ang (1-7) axis. Ang III (2-8) and other peptides formed from aminopeptidase A cleavage may be important therapeutic RAS targets. |