|  Help  |  About  |  Contact Us

Publication : Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties.

First Author  Silm K Year  2019
Journal  Neuron Volume  102
Issue  4 Pages  786-800.e5
PubMed ID  31003725 Mgi Jnum  J:275804
Mgi Id  MGI:6314030 Doi  10.1016/j.neuron.2019.03.031
Citation  Silm K, et al. (2019) Synaptic Vesicle Recycling Pathway Determines Neurotransmitter Content and Release Properties. Neuron 102(4):786-800.e5
abstractText  In contrast to temporal coding by synaptically acting neurotransmitters such as glutamate, neuromodulators such as monoamines signal changes in firing rate. The two modes of signaling have been thought to reflect differences in release by different cells. We now find that midbrain dopamine neurons release glutamate and dopamine with different properties that reflect storage in different synaptic vesicles. The vesicles differ in release probability, coupling to presynaptic Ca(2+) channels and frequency dependence. Although previous work has attributed variation in these properties to differences in location or cytoskeletal association of synaptic vesicles, the release of different transmitters shows that intrinsic differences in vesicle identity drive different modes of release. Indeed, dopamine but not glutamate vesicles depend on the adaptor protein AP-3, revealing an unrecognized linkage between the pathway of synaptic vesicle recycling and the properties of exocytosis. Storage of the two transmitters in different vesicles enables the transmission of distinct signals.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

12 Bio Entities

Trail: Publication

0 Expression