|  Help  |  About  |  Contact Us

Publication : Accumulation of glucosylceramide in murine testis, caused by inhibition of beta-glucosidase 2: implications for spermatogenesis.

First Author  Walden CM Year  2007
Journal  J Biol Chem Volume  282
Issue  45 Pages  32655-64
PubMed ID  17848577 Mgi Jnum  J:126946
Mgi Id  MGI:3762415 Doi  10.1074/jbc.M702387200
Citation  Walden CM, et al. (2007) Accumulation of glucosylceramide in murine testis, caused by inhibition of beta-glucosidase 2: implications for spermatogenesis. J Biol Chem 282(45):32655-64
abstractText  One of the hallmarks of male germ cell development is the formation of a specialized secretory organelle, the acrosome. This process can be pharmacologically disturbed in C57BL/6 mice, and thus infertility can be induced, by small molecular sugar-like compounds (alkylated imino sugars). Here the biochemical basis of this effect has been investigated. Our findings suggest that in vivo alkylated imino sugars primarily interact with the non-lysosomal glucosylceramidase. This enzyme cleaves glucosylceramide into glucose and ceramide, is sensitive to imino sugars in vitro, and has been characterized as beta-glucosidase 2 (GBA2). Imino sugars raised the level of glucosylceramide in brain, spleen, and testis, in a dose-dependent fashion. In testis, multiple species of glucosylceramide were similarly elevated, those having long acyl chains (C16-24), as well as those with very long polyunsaturated acyl chains (C28-30:5). Both of these GlcCer species were also increased in the testes from GBA2-deficient mice. When considering that the very long polyunsaturated sphingolipids are restricted to germ cells, these results indicate that in the testis GBA2 is present in both somatic and germ cells. Furthermore, in all mouse strains tested imino sugar treatment caused a rise in testicular glucosylceramide, even in a number of strains, of which the males remain fertile after drug administration. Therefore, it appears that acrosome formation can be derailed by accumulation of glucosylceramide in an extralysosomal localization, and that the sensitivity of male germ cells to glucosylceramide is genetically determined.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression