|  Help  |  About  |  Contact Us

Publication : Dectin-1 and IL-17A suppress murine asthma induced by Aspergillus versicolor but not Cladosporium cladosporioides due to differences in β-glucan surface exposure.

First Author  Mintz-Cole RA Year  2012
Journal  J Immunol Volume  189
Issue  7 Pages  3609-17
PubMed ID  22962686 Mgi Jnum  J:190531
Mgi Id  MGI:5449094 Doi  10.4049/jimmunol.1200589
Citation  Mintz-Cole RA, et al. (2012) Dectin-1 and IL-17A suppress murine asthma induced by Aspergillus versicolor but not Cladosporium cladosporioides due to differences in beta-glucan surface exposure. J Immunol 189(7):3609-17
abstractText  There is considerable evidence supporting a role for mold exposure in the pathogenesis and expression of childhood asthma. Aspergillus versicolor and Cladosporium cladosporioides are common molds that have been implicated in asthma. In a model of mold-induced asthma, mice were repeatedly exposed to either A. versicolor or C. cladosporioides spores. The two molds induced distinct phenotypes, and this effect was observed in both BALB/c and C57BL/6 strains. C. cladosporioides induced robust airway hyperresponsiveness (AHR), eosinophilia, and a predominately Th2 response, whereas A. versicolor induced a strong Th17 response and neutrophilic inflammation, but very mild AHR. Neutralization of IL-17A resulted in strong AHR and eosinophilic inflammation following A. versicolor exposure. In Dectin-1-deficient mice, A. versicolor exposure resulted in markedly attenuated IL-17A and robust AHR compared with wild-type mice. In contrast, C. cladosporioides induced AHR and eosinophilic inflammation independent of IL-17A and Dectin-1. A. versicolor, but not C. cladosporioides, spores had increased exposure of beta-glucans on their surface and were able to bind Dectin-1. Thus, the host response to C. cladosporioides was IL-17A- and Dectin-1-independent, whereas Dectin-1- and IL-17A-dependent pathways were protective against the development of asthma after exposure to A. versicolor.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression