|  Help  |  About  |  Contact Us

Publication : Lmx1b is required at multiple stages to build expansive serotonergic axon architectures.

First Author  Donovan LJ Year  2019
Journal  Elife Volume  8
PubMed ID  31355748 Mgi Jnum  J:279056
Mgi Id  MGI:6359293 Doi  10.7554/eLife.48788
Citation  Donovan LJ, et al. (2019) Lmx1b is required at multiple stages to build expansive serotonergic axon architectures. Elife 8:e48788
abstractText  Formation of long-range axons occurs over multiple stages of morphological maturation. However, the intrinsic transcriptional mechanisms that temporally control different stages of axon projection development are unknown. Here, we addressed this question by studying the formation of mouse serotonin (5-HT) axons, the exemplar of long-range profusely arborized axon architectures. We report that LIM homeodomain factor 1b (Lmx1b)-deficient 5-HT neurons fail to generate axonal projections to the forebrain and spinal cord. Stage-specific targeting demonstrates that Lmx1b is required at successive stages to control 5-HT axon primary outgrowth, selective routing, and terminal arborization. We show a Lmx1b-->Pet1 regulatory cascade is temporally required for 5-HT arborization and upregulation of the 5-HT axon arborization gene, Protocadherin-alphac2, during postnatal development of forebrain 5-HT axons. Our findings identify a temporal regulatory mechanism in which a single continuously expressed transcription factor functions at successive stages to orchestrate the progressive development of long-range axon architectures enabling expansive neuromodulation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

21 Bio Entities

Trail: Publication

20 Expression

Trail: Publication