|  Help  |  About  |  Contact Us

Publication : Knockdown of Ggps1 in chondrocyte expedites fracture healing by accelerating the progression of endochondral ossification in mice.

First Author  Dai B Year  2018
Journal  J Bone Miner Metab Volume  36
Issue  2 Pages  133-147
PubMed ID  28357594 Mgi Jnum  J:344754
Mgi Id  MGI:6754561 Doi  10.1007/s00774-017-0824-9
Citation  Dai B, et al. (2018) Knockdown of Ggps1 in chondrocyte expedites fracture healing by accelerating the progression of endochondral ossification in mice. J Bone Miner Metab 36(2):133-147
abstractText  Bone fracture healing is achieved through the proliferation and differentiation of stem cells, while bone marrow stem cells (BMSCs) contribute to endochondral ossification. During fracture healing, mesenchymal progenitor cells first form a cartilaginous blastema that becomes vascularized to recruit precursor cells of osteoblasts through the bone morphogenetic protein 2 (Bmp2)/Smad-dependent Runx2 pathway. Statins deplete geranylgeranyl diphosphate (GGPP), which participates in the regulation of BMSCs differentiation, through the inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, leading to impaired protein geranylgeranylation, which strongly impacts the bone synthesis induced by Bmp2. Accordingly, we would like to investigate the role of geranylgeranyl diphosphate synthase 1 (Ggps1) in bone fracture via endochondral ossification in mice. We used a Cre-loxP system, namely the tamoxifen-inducible Collagen 2-CreER(T2) Ggps1 (fl/fl), to eliminate specifically the Ggps1 activity in chondrocytes of 8-10-week-old mice. We found that the endochondral bone formation, calcification and vasculogenesis of the bony callus were accelerated in fractures in Ggps1(-/-)mice. Together, the results of this study confirm that the specific deletion of Ggps1, using the Collagen 2-CreER(T2) mice, will accelerate the fracture healing process by activating the Bmp2/Smad-dependent Runx2 pathway. In addition, we managed to improve the fracture healing process by inhibiting the Ggps1 activity and its related products with statin drugs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression