First Author | George J | Year | 2017 |
Journal | J Cell Mol Med | Volume | 21 |
Issue | 12 | Pages | 3821-3835 |
PubMed ID | 28782260 | Mgi Jnum | J:272792 |
Mgi Id | MGI:6282429 | Doi | 10.1111/jcmm.13304 |
Citation | George J, et al. (2017) MMP-13 deletion decreases profibrogenic molecules and attenuates N-nitrosodimethylamine-induced liver injury and fibrosis in mice. J Cell Mol Med 21(12):3821-3835 |
abstractText | Connective tissue growth factor (CTGF) is involved in inflammation, pathogenesis and progression of liver fibrosis. Matrix metalloproteinase-13 (MMP-13) cleaves CTGF and releases several fragments, which are more potent than the parent molecule to induce fibrosis. The current study was aimed to elucidate the significance of MMP-13 and CTGF and their downstream effects in liver injury and fibrosis. Hepatic fibrosis was induced using intraperitoneal injections of N-nitrosodimethylamine (NDMA) in doses of 10 mug/g body weight on three consecutive days of each week over a period of 4 weeks in both wild-type (WT) and MMP-13 knockout mice. Administration of NDMA resulted in marked elevation of AST, ALT, TGF-beta1 and hyaluronic acid in the serum and activation of stellate cells, massive necrosis, deposition of collagen fibres and increase in total collagen in the liver of WT mice with a significant decrease in MMP-13 knockout mice. Protein and mRNA levels of CTGF, TGF-beta1, alpha-SMA and type I collagen and the levels of MMP-2, MMP-9 and cleaved products of CTGF were markedly increased in NDMA-treated WT mice compared to the MMP-13 knockout mice. Blocking of MMP-13 with CL-82198 in hepatic stellate cell cultures resulted in marked decrease of the staining intensity of CTGF as well as protein levels of full-length CTGF and its C-terminal fragments and active TGF-beta1. The data demonstrate that MMP-13 and CTGF play a crucial role in modulation of fibrogenic mediators and promote hepatic fibrogenesis. Furthermore, the study suggests that blocking of MMP-13 and CTGF has potential therapeutic implications to arrest liver fibrosis. |