|  Help  |  About  |  Contact Us

Publication : Different phosphatase-dependent mechanisms mediate long-term depression and depotentiation of long-term potentiation in mouse hippocampal CA1 area.

First Author  Jouvenceau A Year  2003
Journal  Eur J Neurosci Volume  18
Issue  5 Pages  1279-85
PubMed ID  12956726 Mgi Jnum  J:89710
Mgi Id  MGI:3041312 Doi  10.1046/j.1460-9568.2003.02831.x
Citation  Jouvenceau A, et al. (2003) Different phosphatase-dependent mechanisms mediate long-term depression and depotentiation of long-term potentiation in mouse hippocampal CA1 area. Eur J Neurosci 18(5):1279-85
abstractText  Two types of synaptic depression have been described in the hippocampus, long-term depression and depotentiation of long-term potentiation known to recruit the serine/threonine protein phosphatases PP1, PP2A and PP2B (calcineurin). The contribution of each of these protein phosphatases is controversial. To examine the role of the Ca2+/calmodulin-dependent protein phosphatase calcineurin in long-term depression and depotentiation, we analysed the effect of genetically inhibiting calcineurin reversibly in the hippocampus, using the doxycycline-dependent rtTA system in transgenic mice. We show that reducing calcineurin activity has no effect on long-term depression but reversibly affects depotentiation. Consistently, the calcineurin inhibitor FK-506 reproduces the depotentiation impairment observed in the mutant mice but does not affect long-term depression in control animals. In contrast, the PP1/PP2A inhibitor okadaic acid fully blocks both long-term depression and depotentiation. These data demonstrate that the nature of signalling cascades induced by synaptic activity depends on the initial synaptic state. While depression of potentiated synaptic responses requires activation of PP1/PP2A and/or calcineurin, depression of basal synaptic responses depends only on PP1/PP2A activation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression