First Author | Ha EH | Year | 2019 |
Journal | J Allergy Clin Immunol | Volume | 144 |
Issue | 2 | Pages | 561-573.e6 |
PubMed ID | 30928652 | Mgi Jnum | J:290641 |
Mgi Id | MGI:6443560 | Doi | 10.1016/j.jaci.2019.02.034 |
Citation | Ha EH, et al. (2019) Endothelial Sox17 promotes allergic airway inflammation. J Allergy Clin Immunol 144(2):561-573.e6 |
abstractText | BACKGROUND: IL-33, levels of which are known to be increased in patients with eosinophilic asthma and which is suggested as a therapeutic target for it, activates endothelial cells in which Sry-related high-mobility-group box (Sox) 17, an endothelium-specific transcription factor, was upregulated. OBJECTIVE: We investigated the relationship between Sox17 and IL-33 and the possible role of Sox17 in the pathogenesis of asthma using a mouse model of airway inflammation. METHODS: We used ovalbumin (OVA) to induce airway inflammation in endothelium-specific Sox17 null mutant mice and used IL-33 neutralizing antibody to evaluate the interplay between IL-33 and Sox17. We evaluated airway inflammation and measured levels of various cytokines, chemokines, and adhesion molecules. We also carried out loss- or gain-of-function experiments for Sox17 in human endothelial cells. RESULTS: Levels of IL-33 and Sox17 were significantly increased in the lungs of OVA-challenged mice. Anti-IL-33 neutralizing antibody treatment attenuated not only OVA-induced airway inflammation but also Sox17 expression in pulmonary endothelial cells. Importantly, endothelium-specific deletion of Sox17 resulted in significant alleviation of various clinical features of asthma, including airway inflammation, immune cell infiltration, cytokine/chemokine production, and airway hyperresponsiveness. Sox17 deletion also resulted in decreased densities of Ly6c(high) monocytes and inflammatory dendritic cells in the lungs. In IL-33-stimulated human endothelial cells, Sox17 showed positive correlation with CCL2 and intercellular adhesion molecule 1 levels. Lastly, Sox17 promoted monocyte adhesion to endothelial cells and upregulated the extracellular signal-regulated kinase-signal transducer and activator of transcription 3 pathway. CONCLUSION: Sox17 was regulated by IL-33, and its genetic ablation in endothelial cells resulted in alleviation of asthma-related pathophysiologic features. Sox17 might be a potential target for asthma management. |