|  Help  |  About  |  Contact Us

Publication : Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation.

First Author  Schneider I Year  2001
Journal  J Biol Chem Volume  276
Issue  15 Pages  11539-44
PubMed ID  11278803 Mgi Jnum  J:100968
Mgi Id  MGI:3590110 Doi  10.1074/jbc.M010977200
Citation  Schneider I, et al. (2001) Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J Biol Chem 276(15):11539-44
abstractText  Mutant human presenilin-1 (PS1) causes an Alzheimer's-related phenotype in the brain of transgenic mice in combination with mutant human amyloid precursor protein by means of increased production of amyloid peptides (Dewachter, I., Van Dorpe, J., Smeijers, L., Gilis, M., Kuiperi, C., Laenen, I., Caluwaerts, N., Moechars, D., Checler, F., Vanderstichele, H. & Van Leuven, F. (2000) J. Neurosci. 20, 6452-6458) that aggravate plaques and cerebrovascular amyloid (Van Dorpe, J., Smeijers, L., Dewachter, I., Nuyens, D., Spittaels, K., van den Haute, C., Mercken, M., Moechars, D., Laenen, I., Kuiperi, C., Bruynseels, K., Tesseur, I., Loos, R., Vanderstichele, H., Checler, F., Sciot, R. & Van Leuven, F. (2000) J. Am. Pathol. 157, 1283-1298). This gain of function of mutant PS1 is approached here in three paradigms that relate to glutamate neurotransmission. Mutant but not wild-type human PS1 (i) lowered the excitotoxic threshold for kainic acid in vivo, (ii) facilitated hippocampal long-term potentiation in brain slices, and (iii) increased glutamate-induced intracellular calcium levels in isolated neurons. Prominent higher calcium responses were triggered by thapsigargin and bradykinin, indicating that mutant PS modulates the dynamic release and storage of calcium ions in the endoplasmatic reticulum. In reaction to glutamate, overfilled Ca(2+) stores resulted in higher than normal cytosolic Ca(2+) levels, explaining the facilitated long-term potentiation and enhanced excitotoxicity. The lowered excitotoxic threshold for kainic acid was also observed in mice transgenic for mutant human PS2[N141I] and was prevented by dantrolene, an inhibitor of Ca(2+) release from the endoplasmic reticulum.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression