First Author | Lin W | Year | 2018 |
Journal | EMBO Rep | Volume | 19 |
Issue | 6 | PubMed ID | 29674348 |
Mgi Jnum | J:262604 | Mgi Id | MGI:6160159 |
Doi | 10.15252/embr.201744951 | Citation | Lin W, et al. (2018) RKIP mediates autoimmune inflammation by positively regulating IL-17R signaling. EMBO Rep 19(6) |
abstractText | Th17 cells contribute to the development of autoimmune diseases by secreting interleukin-17 (IL-17), which activates its receptor (IL-17R) that is expressed on epithelial cells, macrophages, microglia, and resident neuroectodermal cells. However, the mechanisms through which IL-17R-mediated signaling contributes to the development of autoimmune disease have not been completely elucidated. Here, we demonstrate that Raf-1 kinase inhibitor protein (RKIP) deficiency in mice ameliorates the symptoms of experimental autoimmune encephalomyelitis (EAE). Adoptive T-cell-transfer experiments demonstrate that RKIP plays a predominant role in Th17-mediated, but not in Th1-mediated immune responses. RKIP deficiency has no effect on Th17-cell differentiation ex vivo, nor does it affect Th17-cell differentiation in EAE mice. However, RKIP significantly promotes IL-17R-induced proinflammatory cytokine and chemokine production. Mechanistically, RKIP directly interacts with IL-17RA and Act1 to promote the formation of an IL-17R-Act1 complex, resulting in enhanced MAPK- and P65-mediated NF-kappaB activation and downstream cytokine production. Together, these findings indicate that RKIP functions as an essential modulator of the IL-17R-Act1 axis in IL-17R signaling, which promotes IL-17-induced inflammation and autoimmune neuroinflammation. |