| First Author | Kärner J | Year | 2013 |
| Journal | Clin Exp Immunol | Volume | 171 |
| Issue | 3 | Pages | 263-72 |
| PubMed ID | 23379432 | Mgi Jnum | J:193613 |
| Mgi Id | MGI:5468862 | Doi | 10.1111/cei.12024 |
| Citation | Karner J, et al. (2013) Anti-cytokine autoantibodies suggest pathogenetic links with autoimmune regulator deficiency in humans and mice. Clin Exp Immunol 171(3):263-72 |
| abstractText | Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) is a recessive disorder resulting from mutations in the autoimmune regulator (AIRE). The patients' autoantibodies recognize not only multiple organ-specific targets, but also many type I interferons (IFNs) and most T helper type 17 (Th17) cell-associated cytokines, whose biological actions they neutralize in vitro. These anti-cytokine autoantibodies are highly disease-specific: otherwise, they have been found only in patients with thymomas, tumours of thymic epithelial cells that fail to express AIRE. Moreover, autoantibodies against Th17 cell-associated cytokines correlate with chronic mucocutaneous candidiasis in both syndromes. Here, we demonstrate that the immunoglobulin (Ig)Gs but not the IgAs in APECED sera are responsible for neutralizing IFN-omega, IFN-alpha2a, interleukin (IL)-17A and IL-22. Their dominant subclasses proved to be IgG1 and, surprisingly, IgG4 without IgE, possibly implicating regulatory T cell responses and/or epithelia in their initiation in these AIRE-deficiency states. The epitopes on IL-22 and IFN-alpha2a appeared mainly conformational. We also found mainly IgG1 neutralizing autoantibodies to IL-17A in aged AIRE-deficient BALB/c mice - the first report of any target shared by these human and murine AIRE-deficiency states. We conclude that autoimmunization against cytokines in AIRE deficiency is not simply a mere side effect of chronic mucosal Candida infection, but appears to be related more closely to disease initiation. |