|  Help  |  About  |  Contact Us

Publication : Telomere uncapping in progenitor cells with critical telomere shortening is coupled to S-phase progression in vivo.

First Author  Rajaraman S Year  2007
Journal  Proc Natl Acad Sci U S A Volume  104
Issue  45 Pages  17747-52
PubMed ID  17965232 Mgi Jnum  J:127153
Mgi Id  MGI:3763033 Doi  10.1073/pnas.0706485104
Citation  Rajaraman S, et al. (2007) Telomere uncapping in progenitor cells with critical telomere shortening is coupled to S-phase progression in vivo. Proc Natl Acad Sci U S A 104(45):17747-52
abstractText  Telomeres protect chromosome ends and serve as a substrate for telomerase, a reverse transcriptase that adds DNA repeats to the telomere terminus. In the absence of telomerase, telomeres progressively shorten, ultimately leading to telomere uncapping, a structural change at the telomere that activates DNA damage responses and leads to ligation of chromosome ends. Telomere uncapping has been implicated in aging and cancer, yet the precise mechanism of uncapping and its relationship to cell cycle remain to be defined. Here, we show that telomeres uncap in an S-phase-dependent manner in gastrointestinal progenitors of TERT(-/-) mice. We develop an in vivo assay that allows a quantitative kinetic assessment of telomere dysfunction-induced apoptosis and its relationship to cell cycle. By exploiting the mathematical relationship between rates of generation and clearance of apoptotic cells, we show that 86.2 +/- 8.8% of apoptotic gastrointestinal cells undergo programmed cell death either late in S-phase or in G2. Apoptosis is primarily triggered via a signaling cascade from newly uncapped telomeres to the tumor suppressor p53, rather than by chromosome fusion-bridge breakage, because mitotic blockade did not alter the rate of newly generated apoptotic bodies. These data support a model in which rapidly dividing progenitor cells within a tissue with short telomeres are vulnerable to telomere uncapping during or shortly after telomere replication.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression