|  Help  |  About  |  Contact Us

Publication : Downstream mediators of Ten-m3 signalling in the developing visual pathway.

First Author  Glendining KA Year  2017
Journal  BMC Neurosci Volume  18
Issue  1 Pages  78
PubMed ID  29207951 Mgi Jnum  J:277016
Mgi Id  MGI:6296306 Doi  10.1186/s12868-017-0397-5
Citation  Glendining KA, et al. (2017) Downstream mediators of Ten-m3 signalling in the developing visual pathway. BMC Neurosci 18(1):78
abstractText  BACKGROUND: The formation of visuotopically-aligned projections in the brain is required for the generation of functional binocular circuits. The mechanisms which underlie this process are unknown. Ten-m3 is expressed in a broad high-ventral to low-dorsal gradient across the retina and in topographically-corresponding gradients in primary visual centres. Deletion of Ten-m3 causes profound disruption of binocular visual alignment and function. Surprisingly, one of the most apparent neuroanatomical changes-dramatic mismapping of ipsilateral, but not contralateral, retinal axons along the representation of the nasotemporal retinal axis-does not correlate well with Ten-m3's expression pattern, raising questions regarding mechanism. The aim of this study was to further our understanding of the molecular interactions which enable the formation of functional binocular visual circuits. METHODS: Anterograde tracing, gene expression studies and protein pull-down experiments were performed. Statistical significance was tested using a Kolmogorov-Smirnov test, pairwise-fixed random reallocation tests and univariate ANOVAs. RESULTS: We show that the ipsilateral retinal axons in Ten-m3 knockout mice are mismapped as a consequence of early axonal guidance defects. The aberrant invasion of the ventral-most region of the dorsal lateral geniculate nucleus by ipsilateral retinal axons in Ten-m3 knockouts suggested changes in the expression of other axonal guidance molecules, particularly members of the EphA-ephrinA family. We identified a consistent down-regulation of EphA7, but none of the other EphA-ephrinA genes tested, as well as an up-regulation of ipsilateral-determinants Zic2 and EphB1 in visual structures. We also found that Zic2 binds specifically to the intracellular domain of Ten-m3 in vitro. CONCLUSION: Our findings suggest that Zic2, EphB1 and EphA7 molecules may work as effectors of Ten-m3 signalling, acting together to enable the wiring of functional binocular visual circuits.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression