|  Help  |  About  |  Contact Us

Publication : A Disynaptic Circuit in the Globus Pallidus Controls Locomotion Inhibition.

First Author  Aristieta A Year  2021
Journal  Curr Biol Volume  31
Issue  4 Pages  707-721.e7
PubMed ID  33306949 Mgi Jnum  J:321281
Mgi Id  MGI:6741147 Doi  10.1016/j.cub.2020.11.019
Citation  Aristieta A, et al. (2021) A Disynaptic Circuit in the Globus Pallidus Controls Locomotion Inhibition. Curr Biol 31(4):707-721.e7
abstractText  The basal ganglia (BG) inhibit movements through two independent circuits: the striatal neuron-indirect and the subthalamic nucleus-hyperdirect pathways. These pathways exert opposite effects onto external globus pallidus (GPe) neurons, whose functional importance as a relay has changed drastically with the discovery of two distinct cell types, namely the prototypic and the arkypallidal neurons. However, little is known about the synaptic connectivity scheme of different GPe neurons toward both motor-suppressing pathways, as well as how opposite changes in GPe neuronal activity relate to locomotion inhibition. Here, we optogenetically dissect the input organizations of prototypic and arkypallidal neurons and further define the circuit mechanism and behavioral outcome associated with activation of the indirect or hyperdirect pathways. This work reveals that arkypallidal neurons are part of a novel disynaptic feedback loop differentially recruited by the indirect or hyperdirect pathways and that broadcasts inhibitory control onto locomotion only when arkypallidal neurons increase their activity.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

19 Bio Entities

Trail: Publication

0 Expression