|  Help  |  About  |  Contact Us

Publication : Loss of fibulin-2 protects against progressive ventricular dysfunction after myocardial infarction.

First Author  Tsuda T Year  2012
Journal  J Mol Cell Cardiol Volume  52
Issue  1 Pages  273-82
PubMed ID  22100229 Mgi Jnum  J:183660
Mgi Id  MGI:5319051 Doi  10.1016/j.yjmcc.2011.11.001
Citation  Tsuda T, et al. (2012) Loss of fibulin-2 protects against progressive ventricular dysfunction after myocardial infarction. J Mol Cell Cardiol 52(1):273-82
abstractText  Remodeling of the cardiac extracellular matrix (ECM) is an integral part of wound healing and ventricular adaptation after myocardial infarction (MI), but the underlying mechanisms remain incompletely understood. Fibulin-2 is an ECM protein upregulated during cardiac development and skin wound healing, yet mice lacking fibulin-2 do not display any identifiable phenotypic abnormalities. To investigate the effects of fibulin-2 deficiency on ECM remodeling after MI, we induced experimental MI by permanent coronary artery ligation in both fibulin-2 null and wild-type mice. Fibulin-2 expression was up-regulated at the infarct border zone of the wild-type mice. Acute myocardial tissue responses after MI, including inflammatory cell infiltration and ECM protein synthesis and deposition in the infarct border zone, were markedly attenuated in the fibulin-2 null mice. However, the fibulin-2 null mice had significantly better survival rate after MI compared to the wild-type mice as a result of less frequent cardiac rupture and preserved left ventricular function. Up-regulation of TGF-beta signaling and ECM remodeling after MI were attenuated in both ischemic and non-ischemic myocardium of the fibulin-2 null mice compared to the wild type counterparts. Increase in TGF-beta signaling in response to angiotensin II was also lessened in cardiac fibroblasts isolated from the fibulin-2 null mice. The studies provide the first evidence that absence of fibulin-2 results in decreased up-regulation of TGF-beta signaling after MI and protects against ventricular dysfunction, suggesting that fibulin-2 may be a potential therapeutic target for attenuating the progression of ventricular remodeling.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression