First Author | Meyer MR | Year | 2015 |
Journal | J Endocrinol | Volume | 227 |
Issue | 1 | Pages | 61-9 |
PubMed ID | 26303299 | Mgi Jnum | J:328563 |
Mgi Id | MGI:7336250 | Doi | 10.1530/JOE-15-0257 |
Citation | Meyer MR, et al. (2015) G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity. J Endocrinol 227(1):61-9 |
abstractText | Complications of atherosclerotic vascular disease, such as myocardial infarction and stroke, are the most common causes of death in postmenopausal women. Endogenous estrogens inhibit vascular inflammation-driven atherogenesis, a process that involves cyclooxygenase (COX)-derived vasoconstrictor prostanoids such as thromboxane A2. Here, we studied whether the G protein-coupled estrogen receptor (GPER) mediates estrogen-dependent inhibitory effects on prostanoid production and activity under pro-inflammatory conditions. Effects of estrogen on production of thromboxane A(2) were determined in human endothelial cells stimulated by the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-alpha). Moreover, Gper-deficient (Gper(-/-)) and WT mice were fed a pro-inflammatory diet and underwent ovariectomy or sham surgery to unmask the role of endogenous estrogens. Thereafter, contractions to acetylcholine-stimulated endothelial vasoconstrictor prostanoids and the thromboxane-prostanoid receptor agonist U46619 were recorded in isolated carotid arteries. In endothelial cells, TNF-alpha-stimulated thromboxane A2 production was inhibited by estrogen, an effect blocked by the GPER-selective antagonist G36. In ovary-intact mice, deletion of Gper increased prostanoid-dependent contractions by twofold. Ovariectomy also augmented prostanoid-dependent contractions by twofold in WT mice but had no additional effect in Gper(-/-) mice. These contractions were blocked by the COX inhibitor meclofenamate and unaffected by the nitric oxide synthase inhibitor l-N(G)-nitroarginine methyl ester. Vasoconstrictor responses to U46619 did not differ between groups, indicating intact signaling downstream of thromboxane-prostanoid receptor activation. In summary, under pro-inflammatory conditions, estrogen inhibits vasoconstrictor prostanoid production in endothelial cells and activity in intact arteries through GPER. Selective activation of GPER may therefore be considered as a novel strategy to treat increased prostanoid-dependent vasomotor tone or vascular disease in postmenopausal women. |