|  Help  |  About  |  Contact Us

Publication : Cortical-amygdalar circuit dysfunction in a genetic mouse model of serotonin deficiency.

First Author  Dzirasa K Year  2013
Journal  J Neurosci Volume  33
Issue  10 Pages  4505-13
PubMed ID  23467366 Mgi Jnum  J:196373
Mgi Id  MGI:5487852 Doi  10.1523/JNEUROSCI.4891-12.2013
Citation  Dzirasa K, et al. (2013) Cortical-amygdalar circuit dysfunction in a genetic mouse model of serotonin deficiency. J Neurosci 33(10):4505-13
abstractText  Although the majority of first-line antidepressants increase brain serotonin and rare polymorphisms in tryptophan hydroxlase-2 (Tph2), the rate-limiting enzyme in the brain serotonin synthesis pathway, have been identified in cohorts of subjects with major depressive disorder, the circuit level alterations that results from serotonergic hypofunction remain poorly understood. Here we use chronic multicircuit neurophysiological recordings to characterize functional interactions across cortical and limbic circuits in mice engineered to express a human loss-of-function depression allele Tph2-(R441H) [Tph2 knockin (Tph2KI)]. Our results show that Tph2KI mice exhibit increased intra-network synchrony within medial prefrontal cortex (mPFC) and basal amygdala (AMY) and increased inter-network synchrony between these two brain networks. Moreover, we demonstrate that chronic treatment with fluoxetine reverses several of the circuit alterations observed within Tph2KI mice. Together, our findings establish a functional link between functional hyposerotonergia and altered mPFC-AMY network dynamics.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression