|  Help  |  About  |  Contact Us

Publication : Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes.

First Author  Smith SB Year  2008
Journal  Pharmacogenet Genomics Volume  18
Issue  3 Pages  231-41
PubMed ID  18300945 Mgi Jnum  J:132291
Mgi Id  MGI:3775611 Doi  10.1097/FPC.0b013e3282f55ab2
Citation  Smith SB, et al. (2008) Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes. Pharmacogenet Genomics 18(3):231-41
abstractText  AIMS: Interindividual differences in analgesic drug response complicate the clinical management of pain. We aimed to identify genetic factors responsible for variable sensitivity to analgesic drugs of disparate neurochemical classes. METHODS AND RESULTS: Quantitative trait locus mapping in 872 (C57BL/6x129P3)F2 mice was used to identify genetic factors contributing to variability in the analgesic effect of opioid (morphine), alpha2-adrenergic (clonidine), and cannabinoid (WIN55,212-2) drugs against thermal nociception. A region on distal chromosome 1 showing significant linkage to analgesia from all three drugs was identified. Computational (in silico) genetic analysis of analgesic responses measured in a panel of inbred strains identified a haplotype block within this region containing the Kcnj9 and Kcnj10 genes, encoding the Kir3.3 (GIRK3) and Kir4.1 inwardly rectifying potassium channel subunits. The genes are differentially expressed in the midbrain periaqueductal gray of 129P3 versus C57BL/6 mice, owing to cis-acting genetic elements. The potential role of Kcnj9 was confirmed by the demonstration that knockout mice have attenuated analgesic responses. CONCLUSION: A single locus is partially responsible for the genetic mediation of pain inhibition, and genetic variation associated with the potassium channel gene, Kcnj9, is a prime candidate for explaining the variable response to these analgesic drugs.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

15 Bio Entities

Trail: Publication

0 Expression