|  Help  |  About  |  Contact Us

Publication : Klf5 regulates lineage formation in the pre-implantation mouse embryo.

First Author  Lin SC Year  2010
Journal  Development Volume  137
Issue  23 Pages  3953-63
PubMed ID  20980403 Mgi Jnum  J:168150
Mgi Id  MGI:4887283 Doi  10.1242/dev.054775
Citation  Lin SC, et al. (2010) Klf5 regulates lineage formation in the pre-implantation mouse embryo. Development 137(23):3953-63
abstractText  Kruppel-like transcription factors (Klfs) are essential for the induction and maintenance of pluripotency of embryonic stem cells (ESCs), yet little is known about their roles in establishing the three lineages of the pre-implantation embryo. Here, we show that Klf5 is required for the formation of the trophectoderm (TE) and the inner cell mass (ICM), and for repressing primitive endoderm (PE) development. Although cell polarity appeared normal, Klf5 mutant embryos arrested at the blastocyst stage and failed to hatch due to defective TE development. Klf5 acted cell-autonomously in the TE, downstream of Fgf4 and upstream of Cdx2, Eomes and Krt8. In the ICM, loss of Klf5 resulted in reduced expression of pluripotency markers Oct4 and Nanog, but led to increased Sox17 expression in the PE, suggesting that Klf5 suppresses the PE lineage. Consistent with this, overexpression of Klf5 in transgenic embryos was sufficient to suppress the Sox17(+) PE lineage in the ICM. Klf5 overexpression led to a dose-dependent decrease in Sox17 promoter activity in reporter assays in cultured cells. Moreover, in chimeric embryos, Klf5(-/-) cells preferentially contributed to the Sox17(+) PE lineage and Cdx2 expression was not rescued in Klf5(-/-) outer cells. Finally, outgrowths from Klf5(-/-) embryos failed to form an ICM/pluripotent colony, had very few Oct4(+) or Cdx2(+) cells, but showed an increase in the percentage of Sox17(+) PE cells. These findings demonstrate that Klf5 is a dynamic regulator of all three lineages in the pre-implantation embryo by promoting the TE and epiblast lineages while suppressing the PE lineage.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression