First Author | Wegener JW | Year | 2021 |
Journal | Front Physiol | Volume | 12 |
Pages | 777770 | PubMed ID | 34955889 |
Mgi Jnum | J:319355 | Mgi Id | MGI:6841808 |
Doi | 10.3389/fphys.2021.777770 | Citation | Wegener JW, et al. (2021) The RyR2-R2474S Mutation Sensitizes Cardiomyocytes and Hearts to Catecholaminergic Stress-Induced Oxidation of the Mitochondrial Glutathione Pool. Front Physiol 12:777770 |
abstractText | Missense mutations in the cardiac ryanodine receptor type 2 (RyR2) characteristically cause catecholaminergic arrhythmias. Reminiscent of the phenotype in patients, RyR2-R2474S knockin mice develop exercise-induced ventricular tachyarrhythmias. In cardiomyocytes, increased mitochondrial matrix Ca(2+) uptake was recently linked to non-linearly enhanced ATP synthesis with important implications for cardiac redox metabolism. We hypothesize that catecholaminergic stimulation and contractile activity amplify mitochondrial oxidation pathologically in RyR2-R2474S cardiomyocytes. To investigate this question, we generated double transgenic RyR2-R2474S mice expressing a mitochondria-restricted fluorescent biosensor to monitor the glutathione redox potential (E GSH). Electrical field pacing-evoked RyR2-WT and RyR2-R2474S cardiomyocyte contractions resulted in a small but significant baseline E GSH increase. Importantly, beta-adrenergic stimulation resulted in excessive E GSH oxidization of the mitochondrial matrix in RyR2-R2474S cardiomyocytes compared to baseline and RyR2-WT control. Physiologically beta-adrenergic stimulation significantly increased mitochondrial E GSH further in intact beating RyR2-R2474S but not in RyR2-WT control Langendorff perfused hearts. Finally, this catecholaminergic E GSH increase was significantly attenuated following treatment with the RyR2 channel blocker dantrolene. Together, catecholaminergic stimulation and increased diastolic Ca(2+) leak induce a strong, but dantrolene-inhibited mitochondrial E GSH oxidization in RyR2-R2474S cardiomyocytes. |