|  Help  |  About  |  Contact Us

Publication : Reprogramming the body weight set point by a reciprocal interaction of hypothalamic leptin sensitivity and Pomc gene expression reverts extreme obesity.

First Author  Chhabra KH Year  2016
Journal  Mol Metab Volume  5
Issue  10 Pages  869-881
PubMed ID  27689000 Mgi Jnum  J:273988
Mgi Id  MGI:6274182 Doi  10.1016/j.molmet.2016.07.012
Citation  Chhabra KH, et al. (2016) Reprogramming the body weight set point by a reciprocal interaction of hypothalamic leptin sensitivity and Pomc gene expression reverts extreme obesity. Mol Metab 5(10):869-881
abstractText  OBJECTIVE: A major challenge for obesity treatment is the maintenance of reduced body weight. Diet-induced obese mice are resistant to achieving normoweight once the obesogenic conditions are reversed, in part because lowered circulating leptin leads to a reduction in metabolic rate and a rebound of hyperphagia that defend the previously elevated body weight set point. Because hypothalamic POMC is a central leptin target, we investigated whether changes in circulating leptin modify Pomc expression to maintain normal energy balance in genetically predisposed obese mice. METHODS: Mice with reversible Pomc silencing in the arcuate nucleus (ArcPomc (-/-)) become morbidly obese eating low-fat chow. We measured body composition, food intake, plasma leptin, and leptin sensitivity in ArcPomc (-/-) mice weight-matched to littermate controls by calorie restriction, either from weaning or after developing obesity. Pomc was reactivated by tamoxifen-dependent Cre recombinase transgenes. Long acting PASylated leptin was administered to weight-reduced ArcPomc (-/-) mice to mimic the super-elevated leptin levels of obese mice. RESULTS: ArcPomc (-/-) mice had increased adiposity and leptin levels shortly after weaning. Despite chronic calorie restriction to achieve normoweight, ArcPomc (-/-) mice remained moderately hyperleptinemic and resistant to exogenous leptin's effects to reduce weight and food intake. However, subsequent Pomc reactivation in weight-matched ArcPomc (-/-) mice normalized plasma leptin, leptin sensitivity, adiposity, and food intake. In contrast, extreme hyperleptinemia induced by PASylated leptin blocked the full restoration of hypothalamic Pomc expression in calorie restricted ArcPomc (-/-) mice, which consequently regained 30% of their lost body weight and attained a metabolic steady state similar to that of tamoxifen treated obese ArcPomc (-/-) mice. CONCLUSIONS: Pomc reactivation in previously obese, calorie-restricted ArcPomc (-/-) mice normalized energy homeostasis, suggesting that their body weight set point was restored to control levels. In contrast, massively obese and hyperleptinemic ArcPomc (-/-) mice or those weight-matched and treated with PASylated leptin to maintain extreme hyperleptinemia prior to Pomc reactivation converged to an intermediate set point relative to lean control and obese ArcPomc (-/-) mice. We conclude that restoration of hypothalamic leptin sensitivity and Pomc expression is necessary for obese ArcPomc (-/-) mice to achieve and sustain normal metabolic homeostasis; whereas deficits in either parameter set a maladaptive allostatic balance that defends increased adiposity and body weight.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression