|  Help  |  About  |  Contact Us

Publication : Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis.

First Author  Wang X Year  2014
Journal  Biochim Biophys Acta Volume  1842
Issue  5 Pages  701-11
PubMed ID  24486439 Mgi Jnum  J:211589
Mgi Id  MGI:5575709 Doi  10.1016/j.bbadis.2014.01.012
Citation  Wang X, et al. (2014) Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis. Biochim Biophys Acta 1842(5):701-11
abstractText  Sepsis is the leading cause of death in critically ill patients. While myocardial dysfunction has been recognized as a major manifestation in severe sepsis, the underlying molecular mechanisms associated with septic cardiomyopathy remain unclear. In this study, we performed a miRNA array analysis in hearts collected from a severe septic mouse model induced by cecal ligation and puncture (CLP). Among the 19 miRNAs that were dys-regulated in CLP-mouse hearts, miR-223(3p) and miR-223*(5p) were most significantly downregulated, compared with sham-operated mouse hearts. To test whether a drop of miR-223 duplex plays any roles in sepsis-induced cardiac dysfunction and inflammation, a knockout (KO) mouse model with a deletion of the miR-223 gene locus and wild-type (WT) mice were subjected to CLP or sham surgery. We observed that sepsis-induced cardiac dysfunction, inflammatory response and mortality were remarkably aggravated in CLP-treated KO mice, compared with control WTs. Using Western-blotting and luciferase reporter assays, we identified Sema3A, an activator of cytokine storm and a neural chemorepellent for sympathetic axons, as an authentic target of miR-223* in the myocardium. In addition, we validated that miR-223 negatively regulated the expression of STAT-3 and IL-6 in mouse hearts. Furthermore, injection of Sema3A protein into WT mice revealed an exacerbation of sepsis-triggered inflammatory response and myocardial depression, compared with control IgG1 protein-treated WT mice following CLP surgery. Taken together, these data indicate that loss of miR-223/-223* causes an aggravation of sepsis-induced inflammation, myocardial dysfunction and mortality. Our study uncovers a previously unrecognized mechanism underlying septic cardiomyopathy and thereby, may provide a new strategy to treat sepsis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression