First Author | Zhang FP | Year | 2008 |
Journal | Mol Cell Biol | Volume | 28 |
Issue | 17 | Pages | 5381-90 |
PubMed ID | 18573887 | Mgi Jnum | J:139742 |
Mgi Id | MGI:3810005 | Doi | 10.1128/MCB.00651-08 |
Citation | Zhang FP, et al. (2008) Sumo-1 function is dispensable in normal mouse development. Mol Cell Biol 28(17):5381-90 |
abstractText | To elucidate SUMO-1 functions in vivo, we targeted by homologous recombination the last three exons of the murine Sumo-1 gene. Sumo-1 mRNA abundance was reduced to one-half in heterozygotes and was undetectable in Sumo-1(-/-) mice, and SUMO-1-conjugated RanGAP1 was detectable in wild-type mouse embryo fibroblasts (MEFs) but not in Sumo-1(-/-) MEFs, indicating that gene targeting yielded Sumo-1-null mice. Sumo-1 mRNA is expressed in all tissues of wild-type mice, and its abundance is highest in the testis, brain, lungs, and spleen. Sumo-2 and Sumo-3 mRNAs are also expressed in all tissues, but their abundance was not upregulated in Sumo-1-null mice. The development and function of testis are normal in the absence of Sumo-1, and Sumo-1(-)(/)(-) mice of both sexes are viable and fertile. In contrast to a previous report (F. S. Alkuraya et al., Science 313:1751, 2006), we did not observe embryonic or early postnatal demise of Sumo-1-targeted mice; genotypes of embryos and 21-day-old mice were of predicted Mendelian ratios, and there was no defect in lip and palate development in Sumo-1(+/-) or Sumo-1(-/-) embryos. The ability of Sumo-1(-/-) MEFs to differentiate into adipocyte was not different from that of wild-type MEFs. Collectively, our results support the notion that most, if not all, SUMO-1 functions are compensated for in vivo by SUMO-2 and SUMO-3. |