|  Help  |  About  |  Contact Us

Publication : MIST1 Links Secretion and Stress as Both Target and Regulator of the UPR.

First Author  Hess DA Year  2016
Journal  Mol Cell Biol PubMed ID  27644325
Mgi Jnum  J:243004 Mgi Id  MGI:5907412
Doi  10.1128/MCB.00366-16 Citation  Hess DA, et al. (2016) MIST1 Links Secretion and Stress as Both Target and Regulator of the UPR. Mol Cell Biol
abstractText  Transcriptional networks that govern secretory cell specialization, including instructing cells to develop a unique cytoarchitecture, amass extensive protein synthesis machinery, and be embodied to respond to endoplasmic reticulum (ER) stress, remain largely uncharacterized. In this study, we discovered that the secretory cell transcription factor MIST1 (Bhlha15), previously shown to be essential for cytoskeletal organization and secretory activity, also functions as a potent ER stress-inducible transcriptional regulator. Genome-wide DNA binding studies, coupled with genetic mouse models, revealed MIST1 gene targets that function along the entire breadth of the protein synthesis, processing, transport and exocytosis networks. Additionally, key MIST1 targets are essential for alleviating ER stress in these highly specialized cells. Indeed, MIST1 functions as a co-regulator of the UPR master transcription factor XBP1 for a portion of target genes that contain adjacent MIST1 and XBP1 binding sites. Interestingly, Mist1 gene expression is induced during ER stress by XBP1, but as ER stress subsides, MIST1 serves as a feedback inhibitor, directly binding the Xbp1 promoter and repressing Xbp1 transcript production. Together, our findings provide a new paradigm for XBP1-dependent UPR regulation and position MIST1 as a potential biotherapeutic for numerous human diseases.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression