|  Help  |  About  |  Contact Us

Publication : Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors.

First Author  Funahashi Y Year  2019
Journal  Cell Rep Volume  29
Issue  10 Pages  3235-3252.e9
PubMed ID  31801086 Mgi Jnum  J:296789
Mgi Id  MGI:6468825 Doi  10.1016/j.celrep.2019.10.116
Citation  Funahashi Y, et al. (2019) Phosphorylation of Npas4 by MAPK Regulates Reward-Related Gene Expression and Behaviors. Cell Rep 29(10):3235-3252.e9
abstractText  Dopamine (DA) activates mitogen-activated protein kinase (MAPK) via protein kinase A (PKA)/Rap1 in medium spiny neurons (MSNs) expressing the dopamine D1 receptor (D1R) in the nucleus accumbens (NAc), thereby regulating reward-related behavior. However, how MAPK regulates reward-related learning and memory through gene expression is poorly understood. Here, to identify the relevant transcriptional factors, we perform proteomic analysis using affinity beads coated with cyclic AMP response element binding protein (CREB)-binding protein (CBP), a transcriptional coactivator involved in reward-related behavior. We identify more than 400 CBP-interacting proteins, including Neuronal Per Arnt Sim domain protein 4 (Npas4). We find that MAPK phosphorylates Npas4 downstream of PKA, increasing the Npas4-CBP interaction and the transcriptional activity of Npas4 at the brain-derived neurotrophic factor (BDNF) promoter. The deletion of Npas4 in D1R-expressing MSNs impairs cocaine-induced place preference, which is rescued by Npas4-wild-type (WT), but not by a phospho-deficient Npas4 mutant. These observations suggest that MAPK phosphorylates Npas4 in D1R-MSNs and increases transcriptional activity to enhance reward-related learning and memory.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

18 Bio Entities

Trail: Publication

0 Expression