|  Help  |  About  |  Contact Us

Publication : Overexpression of transforming growth factor-beta1 in teeth results in detachment of ameloblasts and enamel defects.

First Author  Haruyama N Year  2006
Journal  Eur J Oral Sci Volume  114 Suppl 1
Pages  30-4; discussion 39-41, 379 PubMed ID  16674659
Mgi Jnum  J:145682 Mgi Id  MGI:3835749
Doi  10.1111/j.1600-0722.2006.00276.x Citation  Haruyama N, et al. (2006) Overexpression of transforming growth factor-beta1 in teeth results in detachment of ameloblasts and enamel defects. Eur J Oral Sci 114 Suppl 1:30-4; discussion 39-41, 379
abstractText  Transforming growth factor-beta1 (TGF-beta1) is a key regulator of many cellular processes, including cell adhesion, the immune response and synthesis of extracellular matrix proteins. In the present study, we report the characterization of enamel defects in a transgenic mouse model overexpressing TGF-beta1 in odontoblasts and ameloblasts, its expression being driven by the promoter sequences of the dentin sialophosphoprotein gene. As reported earlier, these mice develop distinct dentin defects similar to those seen in human dentin dysplasia and dentinogenesis imperfecta. A further detailed examination of enamel in these mice revealed that from the early secretory stage, ameloblasts began to detach from dentin to form cyst-like structures. A soft X-ray analysis revealed that this cyst-like structure had a disorganized and partially mineralized matrix with an abnormal mineralization pattern and a globular appearance. In the molars, the enamel was not only pitted and hypoplastic, but enamel rods were completely lost. Thus, altered TGF-beta1 expression in the tooth seems to trigger detachment of ameloblasts and abnormal secretion and deposition of minerals in the cyst-like structures adjoining the dentin. We speculate that the altered expression of TGF-beta1 in teeth impacts the adhesion process of ameloblasts to dentin.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression