| First Author | Yang JJ | Year | 2012 |
| Journal | Endocrinology | Volume | 153 |
| Issue | 3 | Pages | 1498-508 |
| PubMed ID | 22253416 | Mgi Jnum | J:182547 |
| Mgi Id | MGI:5315823 | Doi | 10.1210/en.2011-1949 |
| Citation | Yang JJ, et al. (2012) Uncovering novel reproductive defects in neurokinin B receptor null mice: closing the gap between mice and men. Endocrinology 153(3):1498-508 |
| abstractText | Patients bearing mutations in TAC3 and TACR3 (which encode neurokinin B and its receptor, respectively) have sexual infantilism and infertility due to GnRH deficiency. In contrast, Tacr3(-/-) mice have previously been reported to be fertile. Because of this apparent phenotypic discordance between mice and men bearing disabling mutations in Tacr3/TACR3, Tacr3 null mice were phenotyped with close attention to pubertal development, estrous cyclicity, and fertility. Tacr3(-/-) mice demonstrated normal timing of preputial separation and day of first estrus, markers of sexual maturation. However, at postnatal d 60, Tacr3(-/-) males had significantly smaller testes and lower FSH levels than their wild-type littermates. Tacr3(-/-) females had lower uterine weights and abnormal estrous cyclicity. Approximately half of Tacr3(-/-) females had no detectable corpora lutea on ovarian histology at postnatal d 60. Despite this apparent ovulatory defect, all Tacr3(-/-) females achieved fertility when mated. However, Tacr3(-/-) females were subfertile, having both reduced numbers of litters and pups per litter. The subfertility of these animals was not due to a primary ovarian defect, because they demonstrated a robust response to exogenous gonadotropins. Thus, although capable of fertility, Tacr3-deficient mice have central reproductive defects. The remarkable ability of acyclic female Tacr3 null mice to achieve fertility is reminiscent of the reversal of hypogonadotropic hypogonadism seen in a high proportion of human patients bearing mutations in TACR3. Tacr3 mice are a useful model to examine the mechanisms by which neurokinin B signaling modulates GnRH release. |