First Author | Gan Y | Year | 2023 |
Journal | Neuropharmacology | Volume | 240 |
Pages | 109714 | PubMed ID | 37690678 |
Mgi Jnum | J:340832 | Mgi Id | MGI:7530548 |
Doi | 10.1016/j.neuropharm.2023.109714 | Citation | Gan Y, et al. (2023) The different cell-specific mechanisms of voluntary exercise and forced exercise in the nucleus accumbens. Neuropharmacology 240:109714 |
abstractText | Physical inactivity is a global epidemic. People who take the initiative to exercise will feel pleasure during the exercise process and stick with it for a long time, while people who passively ask for exercise will feel pain and cannot stick with it. However, the neural mechanisms underlying voluntary and forced exercise remain unclear. Here, we report that voluntary running increased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSC) but decreased membrane excitability in D1R-MSNs, whereas D2R-MSNs did not change in mEPSC and membrane excitability. Forced running increased the frequency of mEPSC and membrane excitability in D2R-MSNs, but D1R-MSNs did not change, which may be the mechanism by which forced exercise has a non-rewarding effect. These findings provide new insights into how voluntary and forced exercise mediate reward and non-reward effects. |